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1.  INTRODUCTION 

Caffeine is a chemical found in coffee, tea, 

cola, guarana, mate, and other products. 

Caffeine   is most commonly used to 

improve mental alertness, but it has many 

other uses. It is a central nervous system 

stimulant of the methylxanthine class. It is 

the world’s most widely consumed 

psychoactive drug. It’s molecular formula is 

C8H10N4O2. Its structure is shown in 

following   figure-1. 

Figure-1 

2 MAIN RESULTS 

2.1 ENERGY OF A GRAPH 

Study on energy of graphs goes back to 

the year 1978, when I. Gutman [12] 

defined this while working with energies  

 

of conjugated hydrocarbon containing 

carbon atoms. All graphs considered in 

this article are assumed to be simple 

without loops and multiple edges. Let A = 

(aij) be the adjacency matrix of the graph 

G with its eigenvalues ρ1, ρ2, ρ3,…ρn 

assumed in decreasing order.  Since A is 

real symmetric, the eigenvalues of G are 

real numbers whose sum equal to zero. 

The sum of the absolute eigenvalues 

values of G is called the energy ℇ(G) of 

G. 

 i.e., ( )  ∑     
 
   .  

Theories on the mathematical concepts 

of graph energy can be seen in the 

reviews [15], articles [14, 5, 6] and the 

references cited there in. For various 

upper and lower bounds for energy of a 

mailto:jagadeeshr1978@gmail.com
mailto:hlpmathsbgs@gmail.com


International Journal of Research in Advent Technology, Vol.6, No.12, December 2018 

E-ISSN: 2321-9637 

Available online at www.ijrat.org 
 

3739 

 

 

 

graph can be found in articles [17, 19] 

and it was observed that graph energy 

has chemical applications in the 

molecular orbital theory of conjugated 

molecules [13, 11]. 

 

Theorem 2.1. The energy of Caffeine is 17.668. 

 

Proof: Consider a molecular graph of 
Caffeine as shown in the following figure-2. 
Here vertices are labeled from v1 to v14. 

Figure-2 

Adjacency matrix of Caffeine is, 
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Characteristic equation is, 

ρ
14

 − 15ρ
12 

+ 82ρ
10

 − 2ρ
9
 − 205ρ

8
+ 14ρ

7
+ 238ρ

6
 

− 28ρ
5
 − 116ρ

4
+ 14ρ

3
+ 21ρ

2
 − 2ρ − 1 = 0. 

The eigenvalues of Caffeine are 

ρ1 ≈ −0.20608,   ρ2 ≈ 0.35516,  ρ3 ≈ −0.50286,         

ρ4 ≈ 0.48925,   ρ5 ≈ 0.83155,  ρ6 ≈ −0.7033,             

ρ7 ≈ −1.4354,     ρ8 ≈ 1.104,  ρ9 ≈ 1.9178,              

ρ10 ≈ −1.6503,  ρ11 ≈ 2.505,  ρ12 ≈ 1.6314,                       

ρ13 ≈ −1.9084 and  ρ14 ≈ −2.4278. 

The energy of Caffeine is, 

ℇ(C8H10N4O2) = | −0.20608 | + | 0.35516 | + | 

−0.50286 | + | 0.48925 | + | 0.83155 | + | −0.7033 

|+ | −1.4354 |    + | 1.104 | + | 1.9178 | + | −1.6503 | 

+ | 2.505 | + | 1.6314 | + | −1.9084 | + |−2.4278 |. 

∴ ℇ(C8H10N4O2) = 17.668. 

 

2.2 SEIDEL ENERGY 

Let G be a simple graph of order n with vertex 

set V = {v1, v2, v3,…… vn} and edge set E. 

The Seidel matrix of G is the n × n matrix 

defined by S(G) := (sij), where 

     {

             

             

           

 

The characteristic polynomial of S(G) is 

denoted by fn(G, ρ) = det(ρI-S(G)). The 

Seidel eigenvalues of the graph G are the 

eigenvalues of S(G). Since S(G) is real 

and symmetric, its eigenvalues are real 

numbers. The Seidel energy [21] of G 

defined as   ( )  ∑      
     

 

Theorem2.2. The Seidal energy of Caffeine is 

40.485. 

 

Proof: The Seidel matrix of Caffeine is, 
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The characteristic equation is, 

ρ
14

 − 91ρ
12

 − 192ρ
11

+ 2109ρ
10

+ 6016ρ
9
 − 

18239ρ
8
 − 63872ρ

7
+ 55187ρ

6
+ 

279296ρ
5
+15263ρ

4
 − 443328ρ

3
 − 227345ρ

2
 + 

66432ρ + 33851 = 0. 

 

The Siedel eigenvalues of Caffeine are 

ρ1  ≈  0.39663,  ρ2  ≈  −0.35852,  ρ3  ≈  −0.78302,  

ρ4  ≈  1.8704,  ρ5  ≈  −1.9476,  ρ6  ≈−2.0469,           

ρ7  ≈ −2.6632,      ρ8  ≈ 2.2971, ρ9≈ 2.7743,         

ρ10≈ −3.3415, ρ11≈ 3.8495, ρ12≈ −4.2632,              

ρ13 ≈ −4.8385 and ρ14 ≈ 9.0545. 

The Seidal energy of Caffeine is, 

Sℇ(C8H10N4O2) = | 0.39663 | + | −0.35852 |             

+| −0.78302 | + | 1.8704 | + | −1.9476 | + | −2.0469 

|+ | −2.6632 |  + | 2.2971 | + | 2.7743 | + | −3.3415 | 

+ | 3.8495 | + | −4.2632 | + | −4.8385 | + |9.0545 |. 

∴ Sℇ (C8H10N4O2) = 40.485. 

2.3 DISTANCE ENERGY 

On addressing problem for loop switching, 

R. L. Graham, H. O. Pollak [10] defined 

distance matrix   of a graph.  The concept of 

distance energy was defined by G. Indulal et 
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al. [18] in the year 2008.  Let G be a simple 

graph of order n with vertex set V = {v1, v2, 

..., vn} and edge set E. Let dij be the distance 

between the vertices viand vj then the n × n 

matrix D(G) = (dij) is called the distance 

matrix of G.  The characteristic polynomial 

of D(G) is denoted by  f (G; ρ) = |ρI− D(G)|, 

where I  is the unit matrix of order n. The 

roots ρ1, ρ2, ..., ρn assumed in non-increasing 

order are called the distance eigenvalues of 

G. The distance energy of a graph G is 

defined as 

  ( )  ∑    

 

   

  

 
Since D(G) is a real symmetric matrix with 

zero trace, these distance eigenvalues are real 

with sum equal to zero. 

 

Theorem2.3 The Distance energy of Caffeine is 

75.726.  

 

Proof: The Distance matrix of Caffeine is, 
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Characteristic equation is, 

ρ
14

 − 872ρ
12

 − 16934ρ
11

 − 144322ρ
10

 − 686010ρ
9
 − 

1990505ρ
8
− 3665696ρ

7
 − 4327488ρ

6
−3227680ρ

5
– 

1453120ρ
4
− 356096ρ

3
− 36096ρ = 0. 

 

Distance eigenvalues Caffeine are 

ρ1 ≈ 0.0,  ρ2 ≈ 0.0,  ρ3 ≈ −0.35595,  ρ4 ≈ −0.45445,  

ρ5 ≈ −0.75793,  ρ6 ≈ −1.035,  ρ7 ≈ −1.1806,            

ρ8 ≈ −1.8473,     ρ9 ≈ −2.2021,  ρ10 ≈ −3.1745,       

ρ11 ≈ −3.8735,  ρ12 ≈ −9.2955,  ρ13 ≈ −13.686  and 

ρ14 ≈ 37.863. 

Distance energy of Caffeine is, 

Dℇ(C8H10N4O2)  = | 0.0 | + | 0.0 | + | −0.35595 | + | 

−0.45445 | + | −0.75793 | + | −1.035 | + |−1.1806 | 

+ | −1.8473 | + | −2.2021 | + | −3.1745 | + | −3.8735 

| + | −9.2955 | + | −13.686 | + |37.863 |. 

∴ Dℇ(C8H10N4O2) = 75.726. 

2.4 HARARY ENERGY 

The concept of Harary energy was introduced 

by A.Dilek Güngör and A.SinanÇevik [8]. The 

Harary matrix of G is the square matrix of 

order n whose (i, j)-entry is
 

   
 where dij 

between the vertices vi and vj.  Let ρ1, ρ2, ..., ρn 

be the eigenvalues of the Harary matrix of G. 

The Harary energy, Hℇ(G) is defined by 

  ( )  ∑    

 

   

  

Further studies on Harary energy can be 

found in [22]. 

Theorem 2.4 The Harary energy of Caffeine is 

17.45 

Proof: The Harary matrix of Caffeine is, 

 

 

Harary eigenvalues of Caffeine are 

ρ1≈−0.06114, ρ2≈−0.20823, ρ3≈0.18343, 

ρ4≈−0.40737, ρ5≈−0.71092, ρ6≈−0.81789, 

ρ7≈−0.96032, ρ8≈0.96864, ρ9≈−1.2803,   

ρ10≈−1.366, ρ11≈−1.5023, ρ12≈1.5037,                    

ρ13 ≈ −1.4103 and ρ14 ≈6.069. 

Harary energy of Caffeine is, 

Hℇ(C8H10N4O2) = | −0.06114 | + | −0.20823 | +  | 

0.18343 | + | −0.40737 | + | −0.71092 |  + 

|−0.81789 |  + | −0.96032 | + | 0.96864 |  + | 

−1.2803 | + | −1.366 | + |−1.5023| + |1.5037|  +                           

|−1.4103 | + | 6.069 |. 

∴ Hℇ(C8H10N4O2) = 17.45. 

2.5 MAXIMUM DEGREE ENERGY 

In the year 2009 C. Adiga and M. Smitha [1] 

defined maximum degree energy of a graph. 

Let G be a simple graph of order n with vertex 

set V={v1,v2,….vn} and edge set E. The 

maximum degree matrix of G is the n × n 

matrix defined by AMD(G) = (aij), where 

    {
   [ (  )  (  )]              

                                               

The characteristic polynomial of AMD(G) is 

denoted by fn(G, ρ) = det(ρI− AMD(G)). The 

maximum degree eigenvalues of the graph 

Gare the eigenvalues of AMD(G). Since 

AMD(G) real and symmetric, its eigenvalues 

are real numbers and we label them in non-
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increasing orderρ1ρ2,…,ρn.The maximum 

degree energy of G is defined as, 

 

   ( )  ∑     
 
   . 

 

Theorem 2.5 The Maximum degree energy of 

Caffeine is 50.292. 

 

Proof: The Maximum degree matrix of 

Caffeine is, 

 

Characteristic equation is, 

ρ
14

 − 121ρ
12

+ 5337ρ
10

 − 324ρ
9
 − 107649ρ

8
+ 

17496ρ
7
+ 1021329ρ

6
 − 

262440ρ
5
−4297455ρ

4
+ 1417176ρ

3
+ 

6790635ρ
2
− 2125764ρ − 2125764 = 0.

 

Maximum degree eigenvalues are 

ρ1 ≈ −0.46444, ρ2 ≈ 0.89234, ρ3 ≈ −1.6097,            

ρ4 ≈ 1.732, ρ5 ≈ 2.0986, ρ6 ≈ −2.4042,                         

ρ7 ≈ −3.3073, ρ8 ≈  3.3792,  ρ9 ≈  4.3373,                  

ρ10 ≈  −5.0594,  ρ11 ≈  −5.4352,  ρ12 ≈  5.6317,         

ρ13≈  −6.8657  and ρ14 ≈ 7.0747. 

The maximum degree energy of Caffeine is, 

MDℇ(C8H10N4O2) = | −0.46444 | + | 0.89234 | +     

| −1.6097 | + | 1.732 | + | 2.0986 | + | −2.4042 |+     

| −3.3073 | +    | 3.3792 | + | 4.3373 | + | −5.0594 | 

+ | −5.4352 | + | 5.6317 | + | −6.8657 | + |7.0747 |. 

∴ MDℇ(C8H10N4O2) = 50.292. 

2.6 RANDIĆ ENERGY 

It was in the year 1975, Milan Randić 

invented a molecular structure descriptor 

called Randić index which is defined as [20] 

 ( )  ∑
 

√    
 

      ( )

 

Motivated by this S.B.Bozkurt et al. [3] 

defined Randić matrix and Randić energy 

as follows. Let G be graph of order n with 

vertex set V={v1,v2,...,vn} and edge set E. 

Randic matrix of G is a n × n symmetric 

matrix defined by R(G) :=(rij), 

Where   rij={

 

√    

           ( )

                    
 

The characteristic equation of R(G) is 

defined by fn(G, ρ) = det(ρI R(G)) = 0. The 

roots of this equation are called Randić 

eigenvalues of G. Since R(G) is real and 

symmetric, its eigenvalue sare real 

numbers and we label them indecreasing 

order  1≥ 2≥…≥, n. Randić energy of G is 

defined as, 

  ( )  ∑    

 

   

 

Further studies on Randić energy can be seen 

in the articles [4, 9, 7] and the references cited 

there in. 

 

Theorem2.6. The Randić energy of Caffeine is 

8.4077. 

 

 Proof:  The Randić matrix of Caffeine is, 
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Randić eigenvalues of Caffeine are 

ρ1  ≈  −0.13462,  ρ2  ≈  0.1918,  ρ3  ≈  −0.37673,        

ρ4  ≈  0.36976,  ρ5  ≈  0.4619,  ρ6  ≈  −0.44906,         

ρ7 ≈ −0.72572, ρ8 ≈ 0.56934, ρ9 ≈ 0.75125,            

ρ10 ≈ −0.68938, ρ11 ≈ −0.96825, ρ12 ≈ 0.85981,       

ρ13 ≈ −0.8601 and ρ14 ≈ 1.0. 

 

Randić energy of Caffeine is, 

Rℇ(C8H10N4O2) = | −0.13462 | + | 0.1918 | +  | 

−0.37673 | + | 0.36976 | + | 0.4619 | + | −0.44906 |+ 

| −0.72572 | + | 0.56934 | + | 0.75125 | + | −0.68938 | 

+ | −0.96825 | + | 0.85981 | + | −0.8601 |+ | 1.0 |. 

 

∴ Rℇ(C8H10N4O2) = 8.4077. 

 

2.7. COLOR ENERGY 

Let G be a simple graph of order n with vertex 

set V = {v1, v2, ...,vn} and edge set E. The 

color matrix of G is the n × n matrix defined 

by Ac(G) := (aij), 

 

   

  {

                               (  )   (  ) 

                                    (  )   (  )

                                                                              

 

The characteristic polynomial of Ac(G) is 

denoted by fn(G, ρ) = det(ρI− Ac(G)). If the 

color   used is minimum then the adjacency 

matrix is denoted by Aχ(G).  The eigenvalues 

of the graph G, its eigenvalues are real 

numbers and we label them in non–

increasing order  1≥ 2≥…≥,n. The color 

energy [2] of G is defined as, 

  ( )  ∑    

 

   

 

 

 If the color used is minimum then the 

energy is called chromatic energy and it is 

denoted by ℇχ(G). 

Theorem 2.7. The chromatic energy of Caffeine is 

27.342. 

 

Proof: The vertices 

V1,V2,V3,V4,V5,V6,V7,V8,V9,V10,V11,V12,V13 

and V14 of Caffeine are colored by minimum  

colors  A, B, A, B, A, A, C, B, A, B, B, A, A  

and  B  respectively.  Chromatic matrix of 

Caffeine is, 
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Characteristic equation is, 

ρ
14

 − 51ρ
12

+ 148ρ
11

+ 349ρ
10

 − 2178ρ
9
+ 

2913ρ
8
+ 1106ρ

7
 − 5375ρ

6
+ 2574ρ

5
+2348ρ

4
 − 

2056ρ
3
 − 76ρ

2
+ 352ρ − 52 = 0. 

 

Chromatic eigenvalues of Caffeine are 

ρ1 ≈ 0.18169, ρ2 ≈ −0.50069, ρ3 ≈ 0.65416,             

ρ4 ≈ 0.82839, ρ5 ≈ 1.276, ρ6 ≈ −0.75367,                  

ρ7 ≈ −0.97904, ρ8 ≈ 1.4647, ρ9 ≈ 1.65, ρ10 ≈ 2.1577, 

ρ11 ≈ 2.5917, ρ12 ≈ 2.8668, ρ13 ≈ −3.7723 and        

ρ14 ≈ −7.6654. 

Chromatic energy of Caffeine is, 

Cℇ(C8H10N4O2) = | 0.18169 | + | −0.50069 | + | 

0.65416 | + | 0.82839 | + | 1.276 | + | −0.75367 |+ | 

−0.97904 | + | 1.4647 | + | 1.65 | + | 2.1577 | 2.5917 

| + | 2.8668 | + | −3.7723 | + | −7.6654 |. 

∴ Cℇ(C8H10N4O2) = 27.342. 

2.8. LAPLACIAN ENERGY 

I.Gutman and B. Zhou [16] defined the 

Laplacian energy of a graph G in the year 

2006. Let G be a graph with n vertices and 

m edges. The Laplacian matrix of the 

graph G, denoted by L = (Lij), is a square 

matrix of order n whose elements are 

defined as, 

     {
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Where di is the degree of the vertex vi. Let be the 

Laplacian eigenvalues of G. Laplacian energy 

Lℇ(G) of G is defined as 

  ( )  ∑|   
  

 
|  

 

   

 

Theorem 2.8. Laplacian energy of caffeine is 

20.969. 

Proof: Degree Matrix Caffeine is, 
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Adjacency matrix of Caffeine is, 
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Laplacian matrix of Caffeine is, 

 

Lℇ(C8H10N4O2) = D(C8H10N4O2) - A(C8H10N4O2) 
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Characteristic equation is, 

 14 - 30 13 + 397  12 - 3056  11 + 15199  10 - 

51324  9 + 120427  8 - 197712  7 + 225883  6-

176506  5 + 91339  4 - 29552  3 + 5342  2 - 406 

  = 0. 

 

Laplacian eigenvalues are 

 1 = 0.0,  2 = 0.2604,  3 = 0.41397,  4= 0.61766, 

 5 = 0.73432,  6 = 0.84225,  7 =1.694,   8= 2.0958, 

 9= 2.3947,  10= 2.8101,  11= 3.9102,  12= 4.3622, 

 13=4.5679 and  14= 5.2966. 

 

Number of vertices = 14 and Number of edges = 15 

Average degree =
  

 
 
    

  
 
  

 
        

Laplacian energy of Caffeine is, 

 

Lℇ(C8H10N4O2)=|0.0-2.1429|+|0.2604-

2.1429|+0.41397-2.1429|+|0,61766-

2.1429|+0.73432-2.1429|+|0.84225-2.1429|+1.694-

2.1429|+|2.0958-2.1429|+|2.3947-2.1429|+|2.8101-

2.1429|+ |3.9102-2.1429|+|3.9102-2.1429|+|4.3622-

2.1429|+|4.5679-2.1429|+|5.2966-2.1429|. 

 

Lℇ(C8H10N4O2) = |-2.1429|+|-1.8825|+|-1.7289|      

+|-1.5252|+|-1.4085|+|-1.3006|+|-0.44886|+ 

|-.047057|+|0.25184|+|0.66724|+|1.7673|+|2.2193| 

+|2.425| +|3.1537|. 

 

Lℇ(C8H10N4O2) =20.969 

 

3. CONCLUSION 

In this article, we compute Energy, Siedel 

energy, Distance energy, Harary energy, 

Maximum degree energy, Randić energy, 

Color energy and Laplacian energy of 

Caffeine. 
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Energy, MATCH, 70 (2013) 669-680. 

[5] D.Cvetković and I.Gutman(eds.), 

Applications of Graph Spectra (Mathematical 

Institution, Belgrade,2009) 

[6] D.Cvetković and I.Gutman(eds.), 

Selected Topics on Applications of Graph 

Spectra, (Mathematical Institute 

Belgrade,2011) 

[7] K.C.Das, Sezer Sorgun and I.Gutman,On 
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